ETHzürich

Real World Robotics Course

Methods and Challenges in Simulation Focus Talk Unit 3

Manuel Mekkattu, Yasunori Toshimitsu, Mike Michelis, Robert Katzschmann Soft Robotics Lab ETH Zurich

How to simulate dexterous object manipulation?

1. Chen, Tao, Jie Xu, and Pulkit Agrawal. "A system for general in-hand object re-orientation." Conference on Robot Learning. PMLR, 2022.<https://taochenshh.github.io/projects/in-hand-reorientation>

Why are simulators important?

Safe **and** *fast* **environment for testing robot controllers**

Parallelized simulation for reinforcement learning (RL)

Model-based control based on simulators

Failure in real environments are expensive

Varian Confidential

Contraction of the contraction

Darpa Robotics Challenge (DRC): https://www.darpa.mil/program/darpa-robotics-challenge

FAIRP

Simulations are safe environments

Varian Confidential

Darpa Robotics Challenge (DRC): https://www.darpa.mil/program/darpa-robotics-challenge

ATLAS

Simulations – Fast environments

Dynamic Dribbling with Faive: Training early stage on the real robot and in Isaac Gym

Benedek Forrai et al. 2023

Learning-based approach for dexterous manipulation

Proximal Policy Optimization (PPO)

- Reinforcement Learning (RL) algorithm
- Scales well to parallel environments³

Domain Randomization¹

- Randomize physics
- Add noise to observations
- Make it robust for physical deployment

Parallelized Simulation

- 1000's of robots in parallel on $GPU^{2,3}$
- Wide exploration of initial conditions, parameters and control policies

- 1. OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, et al. 2018. "Learning Dexterous In-Hand Manipulation." *arXiv [cs.LG]*. arXiv. <http://arxiv.org/abs/1808.00177>
- 2. Makoviychuk, Viktor, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, et al. 2021. "Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning." *Https://openreview.net › Forumhttps://openreview.net › Forum*. https://openreview.net/pdf?id=fgFBtYgJQX_.
- ₃. Rudin, Nikita, David Hoeller, Philipp Reist, and Marco Hutter. 2021. "Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning." *Https://openreview.n*et *›*
Γ *Forumhttps://openreview.net › Forum*. [https://openreview.net/pdf?id=wK2fDDJ5VcF.](https://openreview.net/pdf?id=wK2fDDJ5VcF)

Sim2real framework for dexterous manipulation

1 hour of training time \approx 2 months of real-time simulation

Massively parallel RL in different domains of robotics

Nikita Rudin, David Hoeller, Philipp Reist, Marco Hutter: Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning

Massively parallel RL in different domains of robotics

Advancing Robotic Assembly with a Novel Simulation Approach Using NVIDIA Isaac: [Technical Blog](https://developer.nvidia.com/blog/advancing-robotic-assembly-with-a-novel-simulation-approach-using-nvidia-isaac/)

Massively parallel RL in different domains of robotics

Nico Messikommer, Yunlong Song, Davide Scaramuzza: Contrastive Initial State Buffer for Reinforcement Learning

Run model predictive control *on* the simulated MuJoCo model

- define a cost function to minimize, encoding the desired task
- iteratively apply optimization at every step to find the "best" control inputs
- MuJoCo-MPC uses the MuJoCo simulation as the *model* in the MPC \rightarrow efficient and accurate model-based control

https://github.com/google-deepmind/mujoco_mpc

Howell, Taylor, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval Tassa. 2022. "Predictive Sampling: Real-Time Behaviour Synthesis with MuJoCo." *arXiv [Cs.RO]*. arXiv. http://arxiv.org/abs/2212.00541.

Online Rigid Body Sim for BD Atlas' MPC

key idea when simulating robots: simplification

Why simplify?

Efficiency

trade off some accuracy for speed

For example… $RL \rightarrow$ efficient simulation enables faster training MPC→ faster exploration enables higher control frequency, longer control horizon

Modularity

If the real robot has a good low-level controller, the simulator can use high-level control inputs

For example…

The tendons of the Faive Hand are not (currently) replicated in the simulated model, and it accepts joint-level commands which are easier to learn

Simplification example #1: rolling contact joints

Real robot

Contact between cylindrical surfaces

Ligaments ensure that they don't slide or move apart

Two hinge joints make up a single rolling contact joint Constrained to roll together when the joint is actuated

Simplification example #2: tendon-driven actuation

Real robot

16 servo motors drive the tendons to actuate the hand

Low-level controller can convert joint angles to tendon lengths / servo motor angles

Simulated robot

Musculoskeletal tendons are ignored, and the robot is modelled purely as a 11-DoF joint axis-driven robot

Another example: Hydraulic actuators of the Atlas robot

How to model completely soft robots?

How to model completely soft robots?

FEM (finite element method)

Discretize into a mesh and compute the forces between nodes, based on an elasticity model

Minimal Parameter Modeling

Approximate into a model based on simplifying assumptions, such as piecewise constant curvature

Finite Element Method: Preparing the surface and volumetric meshes

Piecewise Constant Curvature (PCC) model

Robotics

- assumes constant curvature within a PCC element
- PCC state can be described with 2 parameters
	- often used is ϕ (plane of bending) and θ (bending angle)
- by serially connecting PCC elements, continuous curvature can be described

Webster, Robert J., and Bryan A. Jones. 2010. "Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review." *The International Journal of Robotics Research* 29 (13): 1661–83.

23 Toshimitsu, Y., Wong, K.W., Buchner, T. and Katzschmann, R., 2021, January. SoPrA: Fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653-660). IEEE.

Augmented Rigid Link counterpart of a PCC model

Dynamics can be computed from a PCC model by introducing a rigid arm model

- kinematically match PCC element
	- pose transform between base & tip
- dynamically approximate PCC element
	- mass is located at center of link

Webster, Robert J., and Bryan A. Jones. 2010. "Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review." *The International Journal of Robotics Research* 29 (13): 1661–83.

Toshimitsu, Y., Wong, K.W., Buchner, T. and Katzschmann, R., 2021, January. SoPrA: Fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653-660). IEEE.

Summary

Simulate and fail often to simplify later real-world experiments

Safe **and** *fast* **environment for testing robot controllers**

Parallelized simulation for reinforcement learning (RL)

Model-based control based on simulators

