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Toshimitsu et al., Getting the ball rolling, Humanoids  (2023)
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Plan for Today

3. Challenges

Maria College
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2a. Feedback Control

Controller System
+

-

1. Sensing

2b. Model Predictive Control
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Part 1:
Sensing
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Direct methods
such as external motion capture cameras

Fischer, O., Toshimitsu, Y., Kazemipour, A., & Katzschmann, R. K. (2023). Dynamic Task Space Control 

Enables Soft Manipulators to Perform Real‐World Tasks. Advanced Intelligent Systems, 5(1), 2200024.
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Indirect methods

Toshimitsu, Y., Wong, K. W., Buchner, T., & Katzschmann, R. (2021, September). Sopra: Fabrication & 

dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653-660). IEEE.

such as built-in flex sensors



Sensor options

Rotary Encoders

Asahi Kasei Microdevices

Flex Sensors

AdaFruit

Inertial Measurement Unit

Adafruit
6

Camera

Choi, Tahara. Robomech Journal (2020)

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.akm.com%2Fkr%2Fko%2Fproducts%2Frotation-angle-sensor%2Ftutorial%2Foptical-encoder%2F&psig=AOvVaw336LvP2LM2_D2jYKDCZ2tO&ust=1696752572182000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCOClsYS-44EDFQAAAAAdAAAAABAY
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.adafruit.com%2Fproduct%2F182&psig=AOvVaw3wXn_AEP_-eTDInR2vl0Uu&ust=1696753067286000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCJDbxPC_44EDFQAAAAAdAAAAABAp


Rotary Encoders

Asahi Kasei Microdevices 7

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.akm.com%2Fkr%2Fko%2Fproducts%2Frotation-angle-sensor%2Ftutorial%2Foptical-encoder%2F&psig=AOvVaw336LvP2LM2_D2jYKDCZ2tO&ust=1696752572182000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCOClsYS-44EDFQAAAAAdAAAAABAY


Flex Sensors

Knecht et al. Actuation, Sensing and Control of the Faive Robotic Hand 8



Inertial Measurement Unit

9
Olsson, F., Seel, T., Lehmann, D., & Halvorsen, K. (2019, July). Join t axis estimation for fast and slow movements using weighted gyroscope 

and acceleration constraints. In 2019 22th International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE.



10Choi, Tahara. Robomech Journal (2020)

https://link.springer.com/article/10.1186/s40648-020-00162-5


Sensing the touch:

Force Sensing Resistors

Ohmite

Artificial Skin

Weichart et al. Tactile Sensing With Scalable Capacitive 
Sensor Arrays on Flexible Substrates (2021)
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https://ieeexplore.ieee.org/document/9546063
https://ieeexplore.ieee.org/document/9546063


Kalman Filter – The Intuition
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Kalman Filter
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www.kalmanfilter.net

http://www.kalmanfilter.net


Sensing Summary

● Pose estimation

○ Measure absolute pose

○ Measuring relative pose 

● Force estimation

■ Force Sensing Resistors

■ Artificial Skin

■ Kalman Filter
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Controller System+
-

Part 2a:
Feedback Control

Wikimedia
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Simplest controller possible: Open loop

RobotController Input StateReference
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Closed Loop Controller

Reference StateRobotInput

-

Controller
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Inverse Kinematics 

● From greek kinema = motion

● In the past units we learnt that:

● If we invert it we obtain:

● And in a differential form:
A possible inverse kinematics algorithm Robot Dynamics Class @ ETH Zurich

To overcome stability issues, the update can be scaled 
by a factor k

-> slower convergence

19



Inverse Kinematics Control
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Controller System
+

++
-



Trajectory Control

We can use a closed loop controller, but we need to add a component for the desired velocities

We define 

And the desired joint velocity

If we have a desired rotation rate we write

Where     are the angles used to represent the orientation of the end effector.

21



Trajectory Control
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Controller System
+

++
-

-
+



Dynamic control

The dynamic model is 
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Dynamic control

The dynamic model is 

If we know the desired generalized accelerations, velocities and poses we can write

Thus the joint torques will be
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Task-space control

Remember that 

If you derive that with respect to time:

And if we solve the dynamics equation for the joint acceleration and substitute in the equation above we 

get:

Finally, remembering that 

We can write
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Task-space control

Defining the dynamics uniquely depending on the state of the end effector allows us to design a control 

loop
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Part 2b:
Model Predictive Control

Mujoco PC
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https://github.com/google-deepmind/mujoco_mpc
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

Objective function

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

𝑥 𝑡 𝑢 𝑡

𝑢𝑥
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

Prediction horizon

Objective function

𝑥 𝑡 𝑢 𝑡

𝑢𝑥
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

Execute only the “next step”, 

not the whole prediction horizon.

Objective function

𝑥 𝑡 𝑢 𝑡

𝑢𝑥
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

Objective is computed using the state prediction over the horizon.
Objective function

𝑥 𝑡 𝑢 𝑡

𝑢𝑥
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

Objective depends on the task we want to achieve.
Objective function

𝑥 𝑡 𝑢 𝑡

𝑢𝑥



Trajectory following with MPC

33

Desired trajectory

𝑞 (0)*

𝑞 (1)*
𝑞 (2)*

𝑞 (3)*

𝑞 (4)*

𝑞 (5)*

𝑞 (𝑁)*

𝑞(0)

𝑞(1)

𝑞(2)

𝑞(3)

State predictions (horizon T = 3)

Objective 𝐽 = 

𝑡=0

𝑇

𝑐 𝑡

where each step cost 𝑐 𝑡 = | 𝑞
∗
𝑡 − 𝑞(𝑡) |2

After optimization

𝑞 (0)*

𝑞 (1)*
𝑞 (2)*

𝑞 (3)*

𝑞 (4)*

𝑞 (5)*

𝑞 (𝑁)*

𝑞(0)

𝑞(1)

𝑞(2)
𝑞(3)



Cube reorientation with MPC

34

Goal orientation:

Howell et al. 2022, “Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo” 

Objective 𝐽 = 

𝑡=0

𝑇

𝑐 𝑡

where 𝑐 𝑡 = 𝑐𝑢𝑏𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑡 − 𝑔𝑜𝑎𝑙 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 2 + | 𝑐𝑢𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡 − 𝑝𝑎𝑙𝑚 𝑐𝑒𝑛𝑡𝑒𝑟 |2

System state 𝑥(𝑡) includes robot state 𝑞(𝑡), but also the object state.



Mujoco Predictive Control (MJPC) Demo
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System
(robot)

Model predictive controller

Current state Input controls

Optimization

Future controls

Model
(simulation)

State prediction

Cost function

𝑡 𝑡 + 𝑇

Model predictive control

𝑡 𝑡 + 𝑇

How?

𝑥 𝑡 𝑢 𝑡

𝑢𝑥



Trajectory optimization

44

min
𝑢 0 ,𝑢 1 ,…,𝑢(𝑇−1)

𝐽

Given current state 𝑥(0)

such that   𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )



Linear Quadratic Regulator (LQR)

45

min
𝑢 0 ,𝑢 1 ,…,𝑢(𝑇−1)

𝐽

Given current state 𝑥(0)

such that   𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

An optimal feedback law exists.

Quadratic

Linear



Linear Quadratic Regulator (LQR)
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min
𝑢 0 ,𝑢 1 ,…,𝑢(𝑇−1)

𝐽

Given current state 𝑥(0)

such that   𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

An optimal feedback law exists.

Quadratic

Linear

Highly non-linear!

But for robotics, dynamics is rarely linear.



Trajectory optimizers in MJPC

● Derivative-based methods

iLQR: 

Requires 
𝜕𝑓

𝜕𝑥
, 
𝜕𝑓

𝜕𝑢
, 
𝜕𝑐

𝜕𝑥
, 
𝜕𝑐

𝜕𝑢
, 
𝜕2𝑐

𝜕𝑥2
, 
𝜕2𝑐

𝜕𝑢2 , 
𝜕2𝑐

𝜕𝑥𝜕𝑢

Gradient descent:

Requires 
𝜕𝐽

𝜕𝑢

Derivative computation is expensive!

47



Trajectory optimizers in MJPC

● A derivative-free method

Predictive Sampling Algorithm:

Step 1: Rollout all 𝑁 noisy trajectories

Step 2: Pick the best one

● Performs surprisingly well!

● Parallelizable!

48



Feedback Control vs MPC

MPC

49

Feedback control



Feedback Control vs MPC

MPC

● Expensive.

50

Feedback control

● Computationally cheap.



Feedback Control vs MPC

MPC

● Expensive.

● Longer horizon. But still myopic after horizon 𝑇. 
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Feedback control

● Computationally cheap.

● Reacts to immediate residual.



Feedback Control vs MPC

MPC

● Expensive.

● Longer horizon. But still myopic after horizon 𝑇. 

● Requires a computational model.

○ Sim2Real gap.

52

Feedback control

● Computationally cheap.

● Reacts to immediate residual.

● Doesn’t require a model.



Feedback Control vs MPC

MPC

● Expensive.

● Longer horizon. But still myopic after horizon 𝑇. 

● Requires a computational model.

○ Sim2Real gap.

● Can encode higher-level tasks.
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Feedback control

● Computationally cheap.

● Reacts to immediate residual.

● Doesn’t require a model.

● Limited to regulation/tracking.



MPC vs Reinforcement Learning

Reinforcement Learning

54

MPC



MPC vs Reinforcement Learning

Reinforcement Learning

● Offline training needed.
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MPC

● No offline training.



MPC vs Reinforcement Learning

Reinforcement Learning

● Offline training needed.

● Does not require a model. 
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MPC

● No offline training.

● Requires a model.



MPC vs Reinforcement Learning

Reinforcement Learning

● Offline training needed.

● Does not require a model. 

● Can discover latent representations, and 

“intelligent” behavior.

57

MPC

● No offline training.

● Requires a model.

● Limited to our state representations.



MPC vs Reinforcement Learning

Reinforcement Learning

● Offline training needed.

● Does not require a model. 

● Neural network representations and more 

“intelligent” behavior.

● Learns a policy, a direct mapping from 

state to action. 

58

MPC

● No offline training.

● Requires a model.

● Limited to our state representations.

● Slower during execution.



Part 3:
Challenges

Maria College
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https://www.google.com/url?sa=i&url=http%3A%2F%2Fmariacollege.edu%2Fblog%2Fovercoming-challenges&psig=AOvVaw2a-Qo3T5wnvl3wTDj2t8Fc&ust=1696575851474000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCJCjttmr3oEDFQAAAAAdAAAAABAE


What should you expect?

● Uncertainty and Partial Observability

● Long Horizon

● Under/Over actuation

● Sim-to-real gap

● Tendon strain + skin non-linearity

● Encoder's sensibility

60



Uncertainty and Partial Observability

61

Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen, Christopher Amato.
Online Planning for Target Object Search in Clutter under Partial Observability.
IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 2019.

https://www.khoury.northeastern.edu/home/ycx424/icra2019.pdf
https://www.khoury.northeastern.edu/home/ycx424/icra2019.pdf


Long Horizon

62
MPC and constrained systems , TU Eindhoven

https://heemels.tue.nl/research/mpc-and-constrained-systems


Underactuation and Overactuation

Filippeschi et al. Kinematic Optimization for the Design of a 
Collaborative Robot End-Effector for Tele-Echography (2021)

63



Sim-to-real gap

Everyday Robots
64

https://www.google.com/url?sa=i&url=https%3A%2F%2Feverydayrobots.com%2Fthinking%2Fshortening-the-sim-to-real-gap&psig=AOvVaw17BiJpC-YWGfWZJSSj1pKx&ust=1697458419094000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCIjMq8OD-IEDFQAAAAAdAAAAABBO


Tendon strain + skin non-linearity
Joint_closeup.MOV

65

http://drive.google.com/file/d/1fb7jPn7h9K-iBdaqq5d19Bb6rEQead_B/view


Encoder’s sensibility

Asahi Kasei Microdevices

66

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.akm.com%2Fkr%2Fko%2Fproducts%2Frotation-angle-sensor%2Ftutorial%2Foptical-encoder%2F&psig=AOvVaw336LvP2LM2_D2jYKDCZ2tO&ust=1696752572182000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCOClsYS-44EDFQAAAAAdAAAAABAY


Wrap up

3. Challenges

Maria College
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2a. Feedback Control

Controller System
+

-

2b. Model Predictive Control

1. Sensing

https://www.google.com/url?sa=i&url=http%3A%2F%2Fmariacollege.edu%2Fblog%2Fovercoming-challenges&psig=AOvVaw2a-Qo3T5wnvl3wTDj2t8Fc&ust=1696575851474000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCJCjttmr3oEDFQAAAAAdAAAAABAE


Backup Slides
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Sensing the pose: two methods

● Direct methods: Direct reference to the world reference frame

○ The sensors obtain the absolute value of the state we are measuring

● Indirect methods: Obtain a measurement with reference to a second frame

○ The sensors will estimate a relative measurement that can be 

transformed into an absolute measurement

70



Second solution

71

Wrist

rWF rJF

rWJ

Joint

Fingertip
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Indirect methods
e.g., Built-in Flex Sensor

Toshimitsu, Y., Wong, K. W., Buchner, T., & Katzschmann, R. (2021, September). Sopra: Fabrication & 

dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653-660). IEEE.
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G

τ ？

Toshimitsu et al. (2023) https://srl-ethz.github.io/get-ball-rolling/

Force control for tendon actuation

73

https://srl-ethz.github.io/get-ball-rolling/
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Motor 

Positions

Tendon 

Lengths

Joint 

Angles

Force control for tendon actuation
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Force control for tendon actuation

75
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Velocity of 

the motors

Velocity of the 

finger joints

Conservation of Power

Force control for tendon actuation
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Force control for tendon actuation

77
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Force control for tendon actuation

78



Outro no slide
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Useful links

https://link.springer.com/book/10.1007/978-3-319-54413-7

https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c

https://underactuated.csail.mit.edu/index.html

https://www.kalmanfilter.net/default.aspx
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https://link.springer.com/book/10.1007/978-3-319-54413-7
https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
https://underactuated.csail.mit.edu/index.html
https://www.kalmanfilter.net/default.aspx
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